

Disclaimer: The security requirements generated below are produced using artificial
intelligence and have not been verified by security specialists. For a thorough security review, we
recommend exploring our https://devops.security product or contacting our support team for
further information and assistance.

Ruby on Rails
Authentication

Secure Password Storage

Why To protect user credentials from being compromised in case of a data breach.

How

1. Use a strong hashing algorithm like bcrypt or Argon2.
2. Generate a unique salt for each user.
3. Combine the salt and password, then hash them.
4. Store the hashed password and salt in the database.

Example

In Ruby on Rails, use the 'has_secure_password' method in your User model, which uses
bcrypt by default:

app/models/user.rb
class User < ApplicationRecord
 has_secure_password
end

Gemfile

gem 'bcrypt', '~> 3.1.7'

Two-Factor Authentication

Why To add an extra layer of security by requiring users to provide two forms of
identification.

How

1. Implement a one-time password (OTP) system, such as Time-based One-Time
Password (TOTP) or SMS-based OTP.
2. Require users to enter the OTP during the login process.
3. Store the OTP secret securely in the database.
4. Invalidate the OTP after use or after a certain period of time.

Example

In Ruby on Rails, use the 'two_factor_authentication' gem to implement TOTP:

app/models/user.rb
class User < ApplicationRecord
 has_secure_password
 has_one_time_password
end

Gemfile

gem 'two_factor_authentication'

Session Management

Why To prevent unauthorized access to user accounts by managing user sessions securely.

How

1. Generate a unique session ID for each user session.
2. Store session data server-side or encrypt it if stored client-side.
3. Implement session expiration and require re-authentication after a certain period
of inactivity.
4. Invalidate the session ID upon logout or session expiration.

Example

In Ruby on Rails, use the built-in session management:

app/controllers/application_controller.rb
class ApplicationController < ActionController::Base
 protect_from_forgery with: :exception
 before_action :set_current_user

 private

 def set_current_user
 @current_user = User.find_by(id: session[:user_id])
 end
end

app/controllers/sessions_controller.rb
class SessionsController < ApplicationController
 def create
 user = User.find_by(email: params[:email])
 if user && user.authenticate(params[:password])
 session[:user_id] = user.id
 else
 # Handle authentication failure
 end
 end

 def destroy
 session.delete(:user_id)
 end
end

Authorization

Authentication

Why To ensure only authorized users can access protected resources.

How

1. Install the Devise gem.
2. Run 'rails generate devise:install' to configure Devise.
3. Run 'rails generate devise User' to create a User model.
4. Add 'before_action :authenticate_user!' to controllers that require
authentication.
5. Customize the views and controllers as needed.

Example

class PostsController < ApplicationController
 before_action :authenticate_user!

 def index
 @posts = Post.all
 end

 def new
 @post = Post.new
 end

 def create
 @post = current_user.posts.build(post_params)
 if @post.save
 redirect_to posts_path, notice: 'Post was successfully created.'
 else
 render :new
 end
 end

 private

 def post_params
 params.require(:post).permit(:title, :content)
 end
end

Authorization

Why To ensure users can only perform actions they are allowed to.

How

1. Install the Pundit gem.
2. Run 'rails generate pundit:install' to configure Pundit.
3. Create policy files for each model that requires
authorization.
4. Define the rules for each action in the policy files.
5. Use 'authorize' method in controllers to enforce the rules.

Example

class PostPolicy < ApplicationPolicy
 def update?
 user.admin? || record.user == user
 end

 class Scope < Scope
 def resolve
 if user.admin?
 scope.all
 else
 scope.where(user: user)
 end
 end
 end
end

class PostsController < ApplicationController
 before_action :set_post, only: [:edit, :update]

 def edit
 end

 def update
 authorize @post
 if @post.update(post_params)
 redirect_to @post, notice: 'Post was successfully updated.'
 else
 render :edit
 end
 end

 private

 def set_post
 @post = Post.find(params[:id])
 end

 def post_params
 params.require(:post).permit(:title, :content)
 end
end

Input Validation

Input Validation

Why
To prevent security vulnerabilities such as SQL injection, cross-site scripting, and
command injection, which can lead to unauthorized access, data leakage, and
application compromise.

How

1. Identify all user input sources in the application.
2. Define a validation schema for each input source, specifying the allowed data
types, formats, and length.
3. Implement the validation schema using a library or framework that supports
input validation, such as Rails' built-in validation helpers.
4. Reject any input that does not conform to the validation schema.
5. Sanitize and escape any input that will be used in a potentially unsafe context,
such as HTML or SQL queries.
6. Test the input validation implementation to ensure it correctly rejects invalid
input and allows valid input.

Example

class User < ApplicationRecord
 validates :username, presence: true, length: { minimum: 3, maximum: 20 }, format: {
with: /A[a-zA-Z0-9]+z/, message: 'only allows letters and numbers' }
 validates :email, presence: true, format: { with: URI::MailTo::EMAIL_REGEXP }
 validates :password, presence: true, length: { minimum: 8, maximum: 128 },
confirmation: true
end

Output Encoding

Output Encoding

Why Output encoding is essential to prevent Cross-Site Scripting (XSS) attacks, which can
lead to unauthorized access, data theft, and other security breaches.

How

1. Identify all user-controlled data that will be displayed on the web page.
2. Use a secure encoding library, such as the Rails built-in 'html_escape' method, to
encode user-controlled data before displaying it.
3. Ensure that the encoding method is applied consistently throughout the
application.
4. Regularly review and update the encoding method to stay current with best
practices and new vulnerabilities.

Example

In a Ruby on Rails application, you can use the 'html_escape' method to encode user-
controlled data before displaying it. For example:

<%= html_escape(@user.username) %>

This will ensure that any potentially malicious characters in the user's username are
properly encoded and cannot be used to execute an XSS attack.

Secure Configuration

Disable default credentials

Why Default credentials can be easily exploited by attackers to gain unauthorized access to
the system.

How
Identify all default accounts and credentials in the system.
Change default passwords to strong, unique passwords.
Disable or remove unnecessary default accounts.

Example

In Ruby on Rails, remove or change the default credentials in the config/database.yml
file:

production:
 adapter: postgresql
 encoding: unicode
 database: myapp_production
 pool: 5
 username: myapp
 password: <%= ENV['MYAPP_DATABASE_PASSWORD'] %>

Enable secure communication

Why Secure communication prevents eavesdropping and tampering of data transmitted
between the client and server.

How
Install a valid SSL/TLS certificate from a trusted certificate authority.
Configure the server to use HTTPS for all connections.
Redirect all HTTP requests to HTTPS.

Example
In Ruby on Rails, add the following line to the config/environments/production.rb file:

config.force_ssl = true

Limit user privileges

Why Limiting user privileges reduces the risk of unauthorized access and actions within the
system.

How
Implement role-based access control (RBAC) to define user roles and permissions.
Assign the least privilege necessary for each user role.
Regularly review and update user roles and permissions.

Example

In Ruby on Rails, use the CanCanCan gem to define and manage user roles and
permissions:

app/models/ability.rb
class Ability
 include CanCan::Ability

 def initialize(user)
 user ||= User.new

 if user.admin?
 can :manage, :all
 else
 can :read, :all
 end
 end
end

Logging and Monitoring

Log Monitoring

Why Monitoring logs is essential to detect and respond to security incidents, identify system
issues, and ensure compliance with regulations.

How

1. Identify critical log sources.
2. Configure log aggregation and centralization.
3. Set up log retention policies.
4. Implement log analysis and alerting tools.
5. Regularly review logs and respond to alerts.

Example
In Ruby on Rails, use the Lograge gem to configure log aggregation and centralization.
Set up a log retention policy in the config/application.rb file. Use tools like Logstash and
Elasticsearch for log analysis and alerting. Regularly review logs and respond to alerts.

Access Control Logging

Why Logging access control events helps to track user activities, detect unauthorized access
attempts, and maintain a secure environment.

How

1. Identify sensitive operations and data.
2. Log all access control events, including successful and failed attempts.
3. Include relevant information in logs, such as user ID, timestamp, and action.
4. Protect log integrity and confidentiality.
5. Regularly review access control logs.

Example
In Ruby on Rails, use the Audited gem to log access control events. Configure the gem
to log relevant information, such as user ID, timestamp, and action. Protect log integrity
and confidentiality using encryption and access controls. Regularly review access
control logs.

Error Logging

Why Error logging helps to identify and diagnose issues in the application, detect potential
security vulnerabilities, and improve overall system stability.

How

1. Log all application errors, including exceptions and validation failures.
2. Include relevant information in error logs, such as error message, stack trace,
and user context.
3. Configure log levels to filter out unnecessary information.
4. Protect error log integrity and confidentiality.
5. Regularly review error logs and address issues.

Example

In Ruby on Rails, use the built-in Logger class to log application errors. Configure the
logger to include relevant information, such as error message, stack trace, and user
context. Set log levels in the config/environments/*.rb files. Protect error log integrity
and confidentiality using encryption and access controls. Regularly review error logs and
address issues.

Error Handling

Input Validation

Why To prevent security vulnerabilities such as SQL injection, XSS, and command injection.

How

1. Use strong data validation on all user inputs.
2. Use built-in Rails validation helpers.
3. Use custom validation methods for complex validation.
4. Use whitelist approach for validation.
5. Escape any untrusted data before rendering it.

Example

class User < ApplicationRecord
 validates :username, presence: true, length: { minimum: 3, maximum: 20 }, format: {
with: /A[a-zA-Z0-9]+z/ }
 validates :email, presence: true, format: { with: URI::MailTo::EMAIL_REGEXP }
end

Error Handling and Logging

Why To detect and respond to security incidents and provide meaningful information for
debugging.

How

1. Use Rails built-in exception handling.
2. Log security-related events.
3. Use a centralized logging system.
4. Monitor logs for suspicious activity.
5. Do not expose sensitive information in error messages.

Example

config/application.rb

config.log_tags = [:uuid, :remote_ip]

config/environments/production.rb

config.log_level = :info
config.log_formatter = ::Logger::Formatter.new
config.logger = ActiveSupport::TaggedLogging.new(Logger.new(STDOUT))

Access Control

Why To ensure that only authorized users can access specific resources and perform certain
actions.

How

1. Implement role-based access control.
2. Use Rails built-in authentication and authorization mechanisms.
3. Use gems like Devise and CanCanCan for advanced access control.
4. Restrict access to sensitive data and actions.
5. Regularly review and update access control policies.

Example

class ApplicationController < ActionController::Base
 before_action :authenticate_user!

 def require_admin
 unless current_user.admin?
 redirect_to root_path, alert: 'Access denied.'
 end
 end
end

class AdminController < ApplicationController
 before_action :require_admin
end

Data Protection

Encryption

Why Encryption is essential to protect sensitive data from unauthorized access and potential
data breaches.

How

1. Identify sensitive data that needs to be encrypted.
2. Choose a strong encryption algorithm, such as AES-256.
3. Implement encryption using a secure encryption library.
4. Store encryption keys securely, separate from the encrypted data.
5. Regularly update and rotate encryption keys.

Example

In Ruby on Rails, use the ActiveSupport::MessageEncryptor class to encrypt sensitive
data:

require 'active_support'

key = ActiveSupport::KeyGenerator.new('password').generate_key('salt', 32)
encryptor = ActiveSupport::MessageEncryptor.new(key)
encrypted_data = encryptor.encrypt_and_sign('sensitive data')

To decrypt the data:

decrypted_data = encryptor.decrypt_and_verify(encrypted_data)

Access Control

Why Access control ensures that only authorized users can access specific data and perform
certain actions.

How

1. Define user roles and permissions for your application.
2. Implement an authentication system to verify user identities.
3. Implement an authorization system to enforce access control based on user
roles and permissions.
4. Regularly review and update user roles and permissions.

Example

In Ruby on Rails, use the Pundit gem to implement access control:

1. Add 'pundit' to your Gemfile and run 'bundle install'.
2. Generate a policy for a specific model: 'rails generate pundit:policy ModelName'.
3. Define the access rules in the generated policy file.
4. Use 'authorize' method in your controllers to enforce access control.

Example policy file (app/policies/model_name_policy.rb):

class ModelNamePolicy < ApplicationPolicy
 def show?
 user.admin? || record.user == user
 end

 def update?
 user.admin?
 end
end

Example controller usage:

class ModelNamesController < ApplicationController
 def show
 @model_name = ModelName.find(params[:id])
 authorize @model_name
 end

 def update
 @model_name = ModelName.find(params[:id])
 authorize @model_name
 # Update logic here
 end
end

Data Validation

Why Data validation helps prevent security vulnerabilities, such as SQL injection and cross-
site scripting, by ensuring that user input is properly sanitized and validated.

How

1. Identify all user input fields in your application.
2. Implement input validation for each field, using a whitelist approach.
3. Sanitize user input to remove any potentially harmful data.
4. Use parameterized queries or prepared statements to prevent SQL injection.

Example

In Ruby on Rails, use built-in validation methods and strong parameters to validate and
sanitize user input:

Example model validation (app/models/user.rb):

class User < ApplicationRecord
 validates :email, presence: true, format: { with: URI::MailTo::EMAIL_REGEXP }
 validates :username, presence: true, length: { minimum: 3, maximum: 20 }
end

Example controller with strong parameters (app/controllers/users_controller.rb):

class UsersController < ApplicationController
 def create
 @user = User.new(user_params)
 if @user.save
 # Success logic here
 else
 # Error handling here
 end
 end

 private

 def user_params
 params.require(:user).permit(:email, :username)
 end
end

Dependency Management

Secure Dependencies

Why To prevent vulnerabilities from being introduced through third-party libraries and
packages.

How

1. Regularly check for updates and security patches.
2. Use tools like 'bundler-audit' to scan for known vulnerabilities.
3. Review the source code of dependencies when possible.
4. Use a dependency management tool like 'Bundler' to manage dependencies.
5. Limit the use of dependencies to only those that are necessary.

Example

In your Ruby on Rails project, add the 'bundler-audit' gem to your Gemfile:

gem 'bundler-audit', require: false

Then, run 'bundle install' to install the gem. To check for vulnerabilities, run 'bundle
audit check --update'.

Restrict Access to Dependencies

Why To prevent unauthorized access and tampering with dependencies, which could lead to
security breaches.

How

1. Store dependencies in a secure location.
2. Use access controls to limit who can modify dependencies.
3. Use version control systems to track changes to dependencies.
4. Implement a code review process for changes to dependencies.
5. Use digital signatures to verify the integrity of dependencies.

Example
In your Ruby on Rails project, use a private Git repository to store your dependencies.
Configure access controls to limit who can push changes to the repository. Use pull
requests and code reviews to ensure that changes to dependencies are properly
reviewed and approved before being merged.

Secure Deployment

Secure Communication

Why To protect sensitive data from being intercepted or tampered with during transmission.

How

1. Use HTTPS for all web traffic.
2. Enable HTTP Strict Transport Security (HSTS) header.
3. Use secure and up-to-date TLS configurations.
4. Disable insecure SSL/TLS protocols and cipher suites.

Example

In Ruby on Rails, add the following to your config/application.rb file:

config.force_ssl = true

This will enforce HTTPS and enable HSTS by default.

Secure Storage

Why To protect sensitive data from unauthorized access and ensure data integrity.

How

1. Encrypt sensitive data at rest.
2. Use strong and unique encryption keys.
3. Rotate encryption keys regularly.
4. Store encryption keys securely, separate from the data they protect.

Example

In Ruby on Rails, use the ActiveSupport::MessageEncryptor class to encrypt sensitive
data:

encryptor =
ActiveSupport::MessageEncryptor.new(Rails.application.secrets.secret_key_base)
encrypted_data = encryptor.encrypt_and_sign('sensitive data')

Store the encrypted data in your database and manage encryption keys securely.

Secure Authentication

Why To prevent unauthorized access to user accounts and protect user credentials.

How

1. Implement strong password policies.
2. Use secure password hashing algorithms.
3. Enable multi-factor authentication.
4. Limit login attempts to prevent brute force attacks.

Example

In Ruby on Rails, use the Devise gem for secure authentication:

1. Add 'gem "devise"' to your Gemfile and run 'bundle install'.
2. Run 'rails generate devise:install' and follow the instructions.
3. Run 'rails generate devise User' to create a User model with secure password
hashing.
4. Configure Devise settings in config/initializers/devise.rb, such as password length and
lockable strategy.

Secure Access Control

Why To ensure that users can only access the resources and perform actions they are
authorized for.

How

1. Implement role-based access control (RBAC).
2. Enforce the principle of least privilege.
3. Use attribute-based access control (ABAC) for fine-grained permissions.
4. Regularly review and update access control policies.

Example

In Ruby on Rails, use the CanCanCan gem for access control:

1. Add 'gem "cancancan"' to your Gemfile and run 'bundle install'.
2. Run 'rails generate cancan:ability' to create an Ability class.
3. Define access control rules in the Ability class, e.g., 'can :manage, :all if user.admin?'.
4. Use 'authorize_resource' in your controllers to enforce access control.

Generated with gpt-4 at 2023-04-30 07:07:05 +0000 on https://checklist.devops.security

https://checklist.devops.security

	Ruby on Rails
	Authentication
	Secure Password Storage
	Two-Factor Authentication
	Session Management

	Authorization
	Authentication
	Authorization

	Input Validation
	Input Validation

	Output Encoding
	Output Encoding

	Secure Configuration
	Disable default credentials
	Enable secure communication
	Limit user privileges

	Logging and Monitoring
	Log Monitoring
	Access Control Logging
	Error Logging

	Error Handling
	Input Validation
	Error Handling and Logging
	Access Control

	Data Protection
	Encryption
	Access Control
	Data Validation

	Dependency Management
	Secure Dependencies
	Restrict Access to Dependencies

	Secure Deployment
	Secure Communication
	Secure Storage
	Secure Authentication
	Secure Access Control

